

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 63 (2007) 5415-5426

Electroreductive crossed pinacol coupling of aromatic ketones with aliphatic ketones and aldehydes

Naoki Kise,* Yousuke Shiozawa and Nasuo Ueda

Department of Biotechnology, Faculty of Engineering, Tottori University, Koyama, Tottori 680-8552, Japan

Received 21 March 2007; revised 14 April 2007; accepted 16 April 2007 Available online 21 April 2007

Abstract—The intermolecular crossed pinacol coupling of aromatic ketones with aliphatic aldehydes and ketones was effected by electroreduction in the presence of chlorotrimethylsilane. The best result was obtained using a Pb cathode in Bu_4NPF_6/THF . The electroreduction of aromatic 1,4-, 1,5-, and 1,6-diketones under the same conditions gave four-, five-, and six-membered 1,2-diols with trans-stereoselectivity, while the reduction of these diketones with TiCl₄–Zn produced the cis-isomers of the same intramolecular crossed pinacol coupling products predominantly.

© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Crossed pinacol coupling has been well studied with a variety of metal reducing agents from V,¹ Cr,² Yb,³ Sm,⁴ Ti,⁵ In,⁶ and Mg,⁷ since this type of reaction is a promising method for the synthesis of unsymmetrical 1,2-diols. On the other hand, we have recently reported that electroreduction is a useful tool for the reductive intramolecular coupling of aromatic δ - and ϵ -keto esters⁸ and the intermolecular coupling of aromatic ketones with acylimidazoles.9 To extend the possibility of the electroreductive method to the reductive coupling of aromatic ketones, we tried crossed pinacol coupling of aromatic ketones by electroreduction. We wish to report that the electroreduction of aromatic ketones with aliphatic aldehydes or ketones in the presence of chlorotrimethylsilane (CTMS) effected intermolecular crossed pinacol coupling to give the unsymmetrical diols (Scheme 1). In addition, the electroreduction of 1,4-, 1,5-, and 1,6diketones achieved intramolecular crossed pinacol coupling (Scheme 1).¹⁰ It is noted that the trans-isomers of the four-, five-, and six-membered cyclic 1,2-diols were formed preferentially. In the intramolecular coupling of diketones with metal reducing agents, it has been known that the cisisomers of diketones were obtained stereospecifically.^{4,5} This electrochemical method, therefore, provides a complementary method to the reduction with metal reducing agents.

Scheme 1. Electroreductive crossed pinacol coupling.

2. Results and discussion

2.1. Intermolecular electroreductive crossed pinacol coupling of aromatic ketones with aliphatic aldehydes and ketones

Conditions for the electroreductive crossed pinacol coupling of aromatic ketones with aliphatic aldehydes were scrutinized with acetophenone (**1a**) and pentanal (5 equiv) using a divided cell (Table 1). The product, diol **2a**, was isolated as an almost 50:50 mixture of two diastereomers (by ¹H NMR analysis) after desilylation with Bu_4NF in THF. In the absence of CTMS, the diol **2a** was not formed and simply reduced alcohol, 1-phenylethanol, was mainly obtained together with a homocoupling product of **1a**, 1,2-diphenylethane-1,2-diol (run 1). Similar to the electroreductive acylation of aromatic ketones,⁹ the presence of CTMS was essential for the reductive coupling of **1a** (run 2). The addition of triethylamine (5 equiv) to the catholyte improved the yield of **2a** substantially (run 3).⁹ As a supporting electrolyte, Bu_4NPF_6 gave better yield of **2a** than Bu_4NBr and

^{*} Corresponding author. Fax: +81 857 31 5636; e-mail: kise@bio.tottori-u. ac.jp

Table 1. Electroreduction of acetophenone with pentanal

	Ph CH ₃ + CH ₃ (0 0 (5 equ 1a	$(CH_2)_3 CHO = \frac{1}{2} + \frac{1}{2}$	e C BAF Ph- HC	2H ₃ 0 OH 2a
Run	Solvent of catholyte ^a	Additive ^b	Cathode material	Yield ^c of 2a ^d (%)
1	Bu ₄ NPF ₆ /THF	None	Pb	0
2	Bu ₄ NPF ₆ /THF	CTMS	Pb	43
3	Bu ₄ NPF ₆ /THF	CTMS/TEA	Pb	84
4	Bu ₄ NBr/THF	CTMS/TEA	Pb	77
5	Bu ₄ NClO ₄ /THF	CTMS/TEA	Pb	72
6	Bu ₄ NPF ₆ /THF	CTMS/TEA	Au	84
7	Bu ₄ NPF ₆ /THF	CTMS/TEA	Pt	82
8	Bu ₄ NPF ₆ /THF	CTMS/TEA	Zn	82
9	Bu ₄ NPF ₆ /THF	CTMS/TEA	Cu	73
10	Bu ₄ NPF ₆ /THF	CTMS/TEA	Sn	70
11	Bu ₄ NPF ₆ /THF	CTMS/TEA	Ag	69

^a 0.3 M Electrolyte in solvent.

^b 5 equiv.

^c Isolated yields.

^d Obtained as a 50:50 mixture of two diastereomers.

 Bu_4NClO_4 (runs 3–5). Although the electroreductive crossed pinacol coupling seemed to proceed irrespective of the cathode material, Pb, Au, Pt, and Zn brought about slightly better results than the other cathode materials such as Cu, Sn, and Ag (runs 3 and 6–11). Consequently, the best result was obtained using Bu_4NPF_6 as a supporting electrolyte and a Pb cathode in the presence of CTMS and TEA (run 3).

The electroreduction of **1a** and benzophenone (**1b**) with some aliphatic aldehydes and ketones was carried out under the same conditions as run 3 in Table 1. The results exhibited in Table 2 show that aldehydes gave the corresponding diols in excellent yields, although the diastereoselectivity was low (by ¹H NMR analysis). However, ketones brought about poor results probably due to steric hindrance. Especially in the reaction of benzophenone with acetone, diphenylmethanol was obtained in 10% yield (run 7). The minor isomer of

 Table 2. Electroreduction of acetophenone and benzophenone with aliphatic aldehydes and ketones

	Ph F O 1a (1b (R ¹ + R ² COR ³ R ¹ = CH ₃) R ¹ = Ph)	1) + e, CTMS/TEA Bu ₄ NPF ₆ /THF 2) TBAF/THF	$Ar \xrightarrow{R^{1} R^{2}}_{HO OH} R^{3}$ $R^{1} = CH_{3}$ $R^{1} = Ph$
Run	\mathbb{R}^1	R ² COR ^{3a}	$\text{Yield}^{\text{b}} \text{ of } \textbf{2} \text{ and } \textbf{3} \ (\%)$	dr^{c} of 2 and 3
1	CH ₃	CH ₃ (CH ₂) ₃ CHO	2a 84	50:50
2	CH ₃	(CH ₃) ₂ CHCHO	2b 88	55:45
3	CH_3	CH ₃ COCH ₃	2c 45	_
4	CH ₃		2d 30	_
5	Ph	CH ₃ (CH ₂) ₃ CHO	3a 88	_
6	Ph	(CH ₃) ₂ CHCHO	3b 86	_
7	Ph	CH ₃ COCH ₃	3c 10	

^a 5 equiv.

^b Isolated yields.

Diastereomeric ratios of two diastereomers.

Figure 1. X-ray crystal structure of erythro-2b (minor isomer).

2b was confirmed to be *erythro* by X-ray crystallography (Fig. 1). Next, several aromatic ketones were subjected to the electroreductive crossed pinacol coupling with pentanal, 2-methylpropanal, and acetone (Table 3). Aromatic substitution of either electron-donating or electron-withdrawing group had little effect on the yields of diols (runs 5–10).

2.2. Intramolecular electroreductive crossed pinacol coupling of aromatic 1,4-, 1,5-, and 1,6-diketones¹⁰

Electroreduction of aromatic 1,4-, 1,5-, and 1,6-diketones (4-6) was carried out under the same conditions as run 3 in Table 1. The results are summarized in Table 4. The electroreduction of aromatic diketones 4, 5, and 6 afforded four-, five, and six-membered cyclized 1,2-diols 7, 8, and 9, respectively. The reduction products were initially produced as mixtures of ditrimethylsiloxy ethers and monotrimethylsiloxy ethers, both of which were transformed to identical diols after desilvlation with Bu₄NF.¹⁰ para-Methoxy substituted substrates 4b, 5b, and 6b resulted in better yields of the corresponding cyclized products (runs 2, 5, and 8) than non-substituted ones 4a, 5a, and 6a did (runs 1, 4, and 7), while *para*-fluoro substituted substrates 5c and 6c (runs 6 and 9) brought about the results less than those obtained from 5a and 6a (runs 4 and 7). In all cases, trans-1,2-diols were obtained preferentially. The stereochemistry of the major isomer 9a was determined to be trans by the comparison of its ¹H and ¹³C NMR spectra with the reported data of trans-9a.¹¹ In the preliminary paper (Ref. 10), it was reported that trans-9a was obtained stereospecifically. However, it was found that the diastereoselectivity in 9a is trans/cis=87:13 as a result of reinvestigation for the electroreduction of 6a (run 7). The major isomer of 9b was determined to be trans by X-ray crystallography (Fig. 2). The minor isomers of 7, 8, and 9 were identical with authentic cis-isomers prepared by the reduction with $TiCl_4$ -Zn⁵ of 4, 5, and 6 (vide infra).

Next, cyclic diketones 10, 13, and 16 derived from 1-tetralone were employed as the substrate for the crossed pinacol coupling. The electroreduction and subsequent treatment with Bu_4NF of 1,4-diketone 10 produced a bicyclic compound 11 as a single stereoisomer (Scheme 2). On the contrary, acid desilylation after electroreduction of 10

Table 3. Electroreduction of aromatic ketones with aliphatic aldehydes and acetone

		$ \begin{array}{c} \operatorname{Ar} & R^{1} \\ & R^{2} \\ O \\ 1 \end{array} $	${}^{2}COR^{3} = \frac{1) + e, CTMS/TEA}{Bu_{4}NPF_{6}/THF}$ equiv)	$ \begin{array}{c} R^1 R^2 \\ Ar \xrightarrow{H^1} & R^3 \\ HO & OH \\ 2 \end{array} $	
Run	Ar	R^1	R ² COR ³	Yield ^a of 2 (%)	dr^b of 2
1	Ph	C ₂ H ₅	CH ₃ (CH ₂) ₃ CHO	2e 84	60:40
2	Ph	C_2H_5	(CH ₃) ₂ CHCHO	2f 80	60:40
3	Ph	C_2H_5	CH ₃ COCH ₃	2g 30	_
4	Ph	$(CH_3)_2CH$	$(CH_3)_2$ CHCHO	2h 64	50:50
5	p-MeOC ₆ H ₄	CH ₃	$CH_3(CH_2)_3CHO$	2i 78	50:50
6	p-MeOC ₆ H ₄	CH_3	$(CH_3)_2$ CHCHO	2j 90	50:50
7	p-MeOC ₆ H ₄	CH_3	CH ₃ COCH ₃	2k 45	
8	p-FC ₆ H ₄	CH_3	$CH_3(CH_2)_3CHO$	21 80	50:50
9	p-FC ₆ H ₄	CH ₃	(CH ₃) ₂ CHCHO	2m 73	50:50
10	p-FC ₆ H ₄	CH ₃	CH ₃ COCH ₃	2n 44	
11	1-Naphthyl	CH ₃	(CH ₃) ₂ CHCHO	20 76	70:30
12	2-Naphthyl	CH_3	$(CH_3)_2$ CHCHO	2p 90	60:40
13			CH ₃ (CH ₂) ₃ CHO	2q 87	50:50
14			(CH ₃) ₂ CHCHO	2r 69	55:45
15			CH ₃ COCH ₃	2s 33	_

^a Isolated yields.

^b Diastereomeric ratios of two diastereomers.

	Ar 0 4 (5 (6 (0 n = 1) n = 2) n = 3)	1) + e, CTM Bu ₄ NPF 2) TBAF/TH	IS/TEA ₆ /THF A IF A	HO OH $r - \frac{1}{(n-1)}^{n}$ 7 (n = 1) 8 (n = 2) 9 (n = 3)
Run		Ar	п	Yield ^a (%)	trans/cis
1	4a	Ph	1	7a 49	67:33
2	4b	p-MeOC ₆ H	4 1	7b 65	68:32
3	4c	p-FC ₆ H ₄	1	7c 54	72:28
4	5a	Ph	2	8a 60	75:25
5	5b	p-MeOC ₆ H	4 2	8b 65	87:13
6	5c	p-FC ₆ H ₄	2	8c 45	62:38
7	6a	Ph	3	9a 58	87:13
8	6b	p-MeOC ₆ H	4 3	9b 70	70:30
9	6c	p-FC ₆ H ₄	3	9c 40	61:39

^a Isolated yields.

afforded the trans-isomer of diol **12** stereospecifically (Scheme 2): it was confirmed that the obtained **12** did not contain the cis-isomer by comparison of its ¹H and ¹³C NMR spectra with those of the authentic *cis*-**12** prepared by the reduction with TiCl₄–Zn⁵ (vide infra). It is therefore assumed that **11** was formed by ring enlargement of *trans*-**12** under the basic condition for desilylation with Bu₄NF. In the electroreduction and following desilylation of 1,5-diketone **13** (Scheme 3), two five-membered cyclized products, **14** and **15**, were isolated. Their X-ray crystallographic

Figure 2. X-ray crystal structure of trans-9a.

Scheme 2. Electroreductive intramolecular coupling of 1,4-diketone 10.

analysis disclosed that the product **14** is the trans-isomer of diol (*trans*-**14**) while the product **15** is the lactone derived from the cis-isomer of diol (*cis*-**14**) (Figs. 3 and 4). The

Scheme 3. Electroreductive intramolecular coupling of 1,5-diketone 13.

electroreduction of 1,6-diketone **16** followed by desilylation of the reduction products gave the trans-isomer of diol **17** stereospecifically (Scheme 4). The stereochemistry of *trans*-**17** was confirmed by X-ray crystallography (Fig. 5).

It has been reported that the cis-isomers of **8a** and **9a** were prepared by the reduction of **5a** and **6a** with TiCl₄–Zn.⁵ To prepare authentic samples of the cis-isomers of **7**, **8**, **9**, **12**, **14**, and **17**, we also examined the reduction of **4**, **5**, **6**, **10**, **13**, and **16** with TiCl₄–Zn in THF. The results are shown in Table 5 and Scheme 5. From all the substrates except for **5b**, the cisisomers of **7**, **8**, **9**, **12**, **14**, and **17** were formed exclusively. Only in the case of the reduction of **5b**, the trans-isomer of **8b** was obtained stereospecifically in a poor yield for unknown reasons (Table 5, run 5). The stereostructure of *cis*-**12** was established by X-ray crystallographic analysis (Fig. 6).

To elucidate the opposite diastereoselectivity between electroreduction and metal reduction, the reaction mechanism of the intramolecular crossed pinacol coupling can

Figure 3. X-ray crystal structure of trans-14.

Figure 4. X-ray crystal structure of 15.

Scheme 4. Electroreductive intramolecular coupling of 1,6-diketone 16.

Figure 5. X-ray crystal structure of trans-17.

be speculated to be as shown in Scheme 6. In the electroreduction of 1,5-diketone **5a**, anion **18** is formed from **5a** by two-electron transfer to the aromatic carbonyl group in **5a** and subsequent O-silylation, since the reduction potential of aromatic carbonyl group is more positive than that of aliphatic one.⁷ The carbanion in **18** attacks the keto carbonyl group intramolecularly through transition state **19**. Substitution of an electron-donating group on the aromatic ring in **19** reinforces its nucleophilicity and, thus, increased the yield of the cyclized product. Substitution of an electron-withdrawing group, vice versa, decreased

Table 5. Reduction of aromatic 1,4-, 1,5-, and 1,6-diketones with TiCl₄-Zn

	Ar 0 4 (r 5 (r 6 (r	$ \begin{array}{c} 0 \\ \hline 1 \\ \hline n \\ n \\ 1 \end{array} $ $ \begin{array}{c} TiCl_4-Zi \\ \hline THF \\ \hline THF \\ \hline n \\ n \\ 2) \\ n \\ n \\ 3) \end{array} $	n →	HO OH Ar <i>cis</i> -7 (n = 1) <i>cis</i> -8 (n = 2) <i>cis</i> -9 (n = 3)
Run		Ar	п	Yield ^a (%)
1	4a	Ph	1	<i>cis-</i> 7a 76
2	4b	p-MeOC ₆ H ₄	1	cis- 7b 69
3	4c	p-FC ₆ H ₄	1	cis-7c 81
4	5a	Ph	2	<i>cis-</i> 8a 83
5	5b	p-MeOC ₆ H ₄	2	trans-8b 11
6	5c	p-FC ₆ H ₄	2	<i>cis-</i> 8c 98
7	6a	Ph	3	<i>cis-</i> 9a 43
8	6b	p-MeOC ₆ H ₄	3	cis- 9b 48
9	6c	p-FC ₆ H ₄	3	<i>cis-</i> 9c 36

^a Isolated yields.

Scheme 5. Reductive intramolecular coupling of 10, 13, and 16 with $\rm TiCl_4\text{--}Zn.$

the yield. Since *trans*-19 is more favorable than *cis*-19 due to the electronic repulsion between the two oxygen atoms in *cis*-19, *trans*-20 is formed preferentially. In the next step,

Figure 6. X-ray crystal structure of cis-12.

O-silylation of *trans*-20 yields ditrimethylsiloxy ether *trans*-21, while migration of the trimethylsiloxy group leads to *trans*-22, which is then protonated to monotrimethylsiloxy ether *trans*-23. As reported in the preliminary paper (Ref. 10), monotrimethylsiloxy ether was obtained as 2-trimethylsiloxy ether 23. 1-Trimethylsiloxy ether formed through direct protonation of 20 was not obtained in the electroreduction of 5a. In the reduction of 5a with a low-valent titanium, on the contrary, cis transition state 24 is much favored because of the chelation of the two oxygen atoms to the titanium atom. Consequently, *cis*-8a is produced exclusively.

Scheme 6. Reaction mechanism.

3. Conclusion

This paper describes the electroreductive intermolecular coupling of aromatic ketones with aliphatic aldehydes and ketones in the presence of CTMS and TEA followed by desilylation with TBAF in THF to produce 1,2-diols. The presence of CTMS in the catholyte is essential to promote the electroreductive crossed pinacol coupling. In addition, the intramolecular pinacol coupling of aromatic 1,4-, 1,5-, and 1,6-diketones was effectively achieved by electroreductive coupling afforded trans-isomers of the four-, five-, and sixmembered 1,2-diols preferentially, whereas the reduction of these diketones with TiCl₄–Zn produced cis-isomers of the cyclized 1,2-diols predominantly.

4. Experimental section

4.1. General

Column chromatography was performed on silica gel 60. THF was distilled from sodium benzophenone ketyl. CTMS and TEA were distilled from CaH₂.

4.2. Starting materials

1,4-Diketones **4a–c** were obtained by Stetter reaction.¹² 1,5-Diketones **5a–c** and 1,6-diketones **6a–c** were prepared by alkylation of ethyl 3-oxo-3-arylpropanoates with 2-(2-bromoethyl)-2-methyl-1,3-dioxolane¹³ or 2-(3-bromopropyl)-2-methyl-1,3-dioxolane¹⁴ followed by decarboethoxylation. 1,4-Diketone **10** and 1,5-diketone **13** were synthesized by alkylation of ethyl 1-oxo-2,3,4-trihydronaphthalene-2-carboxylate¹⁵ with bromoacetone and methyl vinyl ketone,¹⁶ respectively. 1,6-Diketone **16** was prepared by alkylation of ethyl 1-oxo-2,3,4-trihydronaphthalene-2-carboxylate¹⁵ with 2-(3-bromopropyl)-2-methyl-1,3-dioxolane¹⁴ followed by usual acid hydrolysis of 1,3-dioxolane.

4.3. Typical procedure for electroreduction (Table 1, run 3)

A 0.3 M solution of Bu₄NPF₆ in THF (15 mL) was placed in the cathodic chamber of a divided cell (40-mL beaker, 3 cm diameter, 6 cm height) equipped with a lead cathode $(5 \times 5 \text{ cm}^2)$, a platinum anode $(2 \times 1 \text{ cm}^2)$, and a ceramic cylindrical diaphragm (1.5-cm diameter). A 0.3 M solution of Bu₄NClO₄ in DMF (4 mL) was placed in the anodic chamber (inside the diaphragm). Acetophenone 1a (120 mg, 1 mmol), pentanal (550 mg, 5 mmol), CTMS (0.64 mL, 5 mmol), and triethylamine (0.70 mL, 5 mmol) were added to the cathodic chamber. After 300 C of electricity was passed at a constant current of 100 mA at room temperature, the catholyte was evaporated in vacuo. The residue was diluted with Et₂O (30 mL) and insoluble Bu₄NPF₆ was filtered off. The filtrate was evaporated in vacuo. The residue was diluted with THF (10 mL). To the solution was added 1 M TBAF in THF (2.5 mL, 2.5 mmol) in an ice bath and then the mixture was stirred at this temperature for 30 min. After addition of acetic acid (150 mg, 2.5 mmol), the solvent was removed in vacuo. The crude mixture was purified by column chromatography on silica gel (hexanes/ethyl acetate,

4:1) to give **2a** in 84% yield. The products **2b**,⁷ **2c**,^{7,17} **2d**,⁷ **3a**,¹⁸ **3b**,¹⁹ **3c**,¹⁷ **2g**,⁷ **2k**,²⁰ **2s**,²¹ *cis*-**7a**,^{4a} *cis*-**7b**,^{4a} *trans*-**8a**,⁵ *cis*-**8a**,⁵ *trans*-**9a**,^{5,11} and *cis*-**9b**⁵ were known compounds. The other products were identified by spectroscopic and elemental analyses as follows.

4.3.1. 2-Phenylheptane-2,3-diol (2a). Compound **2a**: 50:50 mixture of two diastereomers. Colorless paste, R_f 0.45 (hexanes/ethyl acetate=2:1, silica gel). IR (neat) 3358, 1603, 1495, 901, 762, 752, 700, 650 cm⁻¹. ¹H NMR (CDCl₃) δ 0.82 (t, 1.5H, *J*=7.0 Hz), 0.85 (t, 1.5H, *J*=7.0 Hz), 1.11–1.54 (m, 6H), 1.51 (s, 1.5H), 1.60 (s, 1.5H), 1.94 (d, 0.5H, *J*=6.4 Hz), 2.10 (d, 0.5H, *J*=3.7 Hz), 2.50 (s, 0.5H), 2.63 (s, 0.5H), 3.62–3.67 (m, 1H), 3.70–3.74 (m, 1H), 7.23–7.29 (m, 3H), 7.32–7.38 (m, 3H), 7.38–7.42 (m, 2H), 7.44–7.48 (m, 2H). ¹³C NMR (CDCl₃) δ 13.9 (q), 22.4 (t), 22.5 (t), 22.6 (t), 26.7 (q), 28.5 (t), 28.6 (t), 30.1 (t), 30.8 (t), 76.6 (s), 76.8 (s), 78.3 (d), 78.4 (d), 125.3 (d), 125.7 (d), 126.6 (d), 127.0 (d), 127.9 (d), 128.1 (d), 144.8 (s), 145.7 (s). Anal. Calcd for C₁₃H₂₀O₂: C, 74.96%; H, 9.68%. Found: C, 74.85%; H, 9.81%.

4.3.2. (2*R**,3*S**)-4-Methyl-2-phenylpentane-2,3-diol (*erythro-2b*). White solid. R_f 0.55 (hexanes/ethyl acetate= 5:1, silica gel). Mp 89–90 °C. ¹H NMR (CDCl₃) δ 0.78 (d, 3H, *J*=6.9 Hz), 0.84 (d, 3H, *J*=6.9 Hz), 1.45–1.54 (m, 1H), 1.62 (s, 3H), 2.06 (br s, 1H), 2.32 (br s, 1H), 3.58–3.61 (m, 1H), 7.23–7.45 (m, 5H). ¹³C NMR (CDCl₃) δ 15.6 (q), 22.2 (q), 28.9 (d), 29.3 (q), 77.3 (s), 81.3 (d), 124.9 (d), 126.6 (d), 128.1 (d), 145.4 (s). Anal. Calcd for C₁₂H₁₈O₂: C, 74.19%; H, 9.34%. Found: C, 74.08%; H, 9.30%.

4.3.3. 2-Phenylheptane-2,3-diol (2e). Compound **2e**: 60:40 mixture of two diastereomers. Colorless paste, R_f 0.6 (hexanes/ethyl acetate=2:1, silica gel). IR (neat) 3439, 1603, 1495, 762, 702 cm⁻¹. ¹H NMR (CDCl₃) δ 0.73 (t, 3H, J= 7.3 Hz), 0.81 (t, 1.2H, J=7.3 Hz), 0.88 (t, 1.8H, J= 7.3 Hz), 1.13–1.63 (m, 6H), 1.88 (q, 2H, J=7.3 Hz), 2.36 (s, 0.4H), 2.50 (s, 0.6H), 3.66–3.72 (m, 0.4H), 3.73–3.79 (m, 0.6H), 7.22–7.30 (m, 2H), 7.32–7.40 (m, 2H), 7.41–7.47 (m, 1H). ¹³C NMR (CDCl₃) δ 7.4 (q), 7.6 (q), 13.9 (q), 14.0 (q), 22.4 (t), 22.6 (t), 28.4 (t), 28.5 (t), 28.6 (t), 29.7 (t), 30.9 (t), 31.3 (t), 77.9 (d), 78.1 (d), 79.4 (s), 79.5 (s), 125.7 (d), 126.2 (d), 126.5 (d), 126.8 (d), 127.9 (d), 128.1 (d), 142.5 (s), 143.7 (s). Anal. Calcd for C₁₄H₂₂O₂: C, 75.63%; H, 9.97%. Found: C, 75.44%; H, 10.15%.

4.3.4. 2-Methyl-4-phenylhexane-3,4-diol (2f). Compound **2f**: less polar isomer. Colorless paste, $R_f 0.35$ (hexanes/ethyl acetate=5:1). ¹H NMR (CDCl₃) δ 0.69 (t, 3H, *J*=7.4 Hz), 0.97 (d, 3H, *J*=6.8 Hz), 1.00 (d, 3H, *J*=6.8 Hz), 1.59 (br s, 1H), 1.78–1.97 (m, 2H), 2.01–2.19 (m, 1H), 2.66 (br s, 1H), 3.68 (br d, 1H, *J*=2.0 Hz), 7.21–7.45 (m, 5H). ¹³C NMR (CDCl₃) δ 7.7 (q), 16.0 (q), 22.3 (q), 28.3 (d), 29.7 (t), 79.8 (s), 81.1 (d), 125.9 (d), 126.5 (d), 128.0 (d), 144.9 (s). Anal. Calcd for C₁₃H₂₀O₂: C, 74.96%; H, 9.68%. Found: C, 74.75%; H, 9.77%.

4.3.5. 2-Methyl-4-phenylhexane-3,4-diol (2f). Compound **2f**: more polar isomer. White solid, R_f 0.3 (hexanes/ethyl acetate=5:1). Mp 57 °C. ¹H NMR (CDCl₃) δ 0.66 (t, 3H, *J*=7.5 Hz), 0.78 (d, 3H, *J*=6.8 Hz), 0.84 (d, 3H, *J*=7.1 Hz), 1.41–1.50 (m, 1H), 1.80–1.90 (m, 1H), 2.06 (br s, 1H,

J=7.3 Hz), 2.11–2.21 (m, 1H), 2.29 (br s, 1H), 3.62–3.66 (m, 1H), 7.22–7.39 (m, 5H). ¹³C NMR (CDCl₃) δ 7.3 (q), 15.3 (q), 22.1 (q), 29.0 (d), 33.4 (t), 79.9 (s), 81.1 (d), 125.4 (d), 126.4 (d), 128.0 (d), 143.0 (s). Anal. Calcd for C₁₃H₂₀O₂: C, 74.96%; H, 9.68%. Found: C, 74.94%; H, 9.67%.

4.3.6. 2,5-Dimethyl-3-phenylhexane-3,4-diol (**2h**). Compound **2h**: less polar isomer. White solid, R_f 0.5 (hexanes/ethyl acetate=5:1). Mp 55–56 °C. ¹H NMR (CDCl₃) δ 0.76 (d, 3H, *J*=7.1 Hz), 0.83 (d, 3H, *J*=6.7 Hz), 0.84 (d, 3H, *J*=6.7 Hz), 1.06 (d, 3H, *J*=6.9 Hz), 1.32 (d, 1H, *J*=5.1 Hz), 1.99–2.08 (m, 1H), 2.31–2.38 (m, 2H), 3.99 (dd, 1H, *J*=2.8, 5.1 Hz), 7.23–7.53 (m, 5H). ¹³C NMR (CDCl₃) δ 16.3 (q), 16.9 (q), 17.2 (q), 22.4 (q), 28.1 (d), 33.6 (d), 77.8 (d), 81.0 (s), 126.5 (d), 126.6 (d), 127.5 (d), 142.8 (s). Anal. Calcd for C₁₄H₂₂O₂: C, 75.63%; H, 9.97%. Found: C, 75.56%; H, 9.95%.

4.3.7. 2,5-Dimethyl-3-phenylhexane-3,4-diol (**2h**). Compound **2h**: more polar isomer. White solid. R_f 0.45 (hexanes/ethyl acetate=5:1). Mp 75–77 °C. ¹H NMR (CDCl₃) δ 0.71 (d, 3H, *J*=6.8 Hz), 0.83 (d, 3H, *J*=6.8 Hz), 0.84 (d, 3H, *J*=6.8 Hz), 0.90 (d, 3H, *J*=7.1 Hz), 1.56–1.65 (m, 1H), 1.86 (d, 1H, *J*=7.3 Hz), 2.26–2.35 (m, 1H), 2.37 (br s, 1H), 4.00 (dd, 1H, *J*=2.4, 7.3 Hz), 7.22–7.36 (m, 5H). ¹³C NMR (CDCl₃) δ 15.6 (q), 16.9 (q), 18.2 (q), 22.3 (q), 29.2 (d), 36.2 (d), 77.4 (d), 81.3 (s), 126.2 (d), 126.4 (d), 127.5 (d), 141.8 (s). Anal. Calcd for C₁₄H₂₂O₂: C, 75.63%; H, 9.97%. Found: C, 75.60%; H, 9.93%.

4.3.8. 2-(4-Methoxyphenyl)heptane-2,3-diol (2i). Compound **2i**: 50:50 mixture of two diastereomers. Colorless paste. R_f 0.35 (hexanes/ethyl acetate=2:1, silica gel). IR (neat) 3379, 1612, 1512, 829 cm⁻¹. ¹H NMR (CDCl₃) δ 0.82 (t, 1.5H, *J*=7.3 Hz), 0.83 (t, 1.5H, *J*=7.3 Hz), 1.09–1.52 (m, 6H), 1.49 (s, 1.5H), 1.55 (s, 1.5H), 2.92 (br s, 2H), 3.57–3.60 (m, 1H), 3.64–3.68 (m, 1H), 3.79 (s, 3H), 6.84–6.89 (m, 2H), 7.28–7.33 (m, 1H), 7.34–7.39 (m, 1H). ¹³C NMR (CDCl₃) δ 13.81 (q), 13.84 (q), 22.38 (t), 22.43 (t), 26.5 (q), 28.5 (t), 28.7 (t), 30.2 (t), 30.7 (t), 55.0 (q), 76.2 (s), 76.4 (s), 78.4 (d), 78.5 (d), 113.2 (d), 113.3 (d), 126.5 (d), 126.9 (d), 137.0 (s), 137.6 (s), 158.1 (s), 158.4 (s). Anal. Calcd for C₁₄H₂₂O₃: C, 70.56%; H, 9.30%. Found: C, 70.32%; H, 9.37%.

4.3.9. 2-(4-Methoxyphenyl)-4-methylpentane-2,3-diol (2j). Compound **2j**: 50:50 mixture of two diastereomers. Colorless paste. R_f 0.5 (hexanes/ethyl acetate=2:1). ¹H NMR (CDCl₃) δ 0.77 (d, 1.5H, *J*=6.8 Hz), 0.85 (d, 1.5H, *J*=6.9 Hz), 0.87 (d, 1.5H, *J*=6.8 Hz), 0.98 (d, 1.5H, *J*=6.9 Hz), 0.87 (d, 1.5H, *J*=6.8 Hz), 0.98 (d, 1.5H, *J*=6.9 Hz), 1.47–1.55 (m, 0.5H), 1.54 (s, 1.5H), 1.60 (s, 1.5H), 1.89 (br s, 0.5H), 2.60 (br s, 0.5H), 3.54 (br s, 0.5H), 3.62 (br d, 0.5H, *J*=2.3 Hz), 3.81 (s, 3H), 6.86–6.90 (m, 2H), 7.32–7.36 (m, 1H), 7.36–7.40 (m, 1H). ¹³C NMR (CDCl₃) δ 15.6 (q), 16.7 (q), 22.10 (q), 22.12 (q), 23.9 (q), 28.65 (d), 28.73 (d), 29.0 (q), 55.02 (d), 55.05 (d), 76.5 (s), 76.8 (s), 81.3 (d), 81.6 (d), 113.29 (d), 113.32 (d), 126.0 (d), 126.6 (d), 137.6 (s), 139.0 (s), 158.1 (s), 158.3 (s). Anal. Calcd for C₁₃H₂₀O₃: C, 69.61%; H, 8.99%. Found: C, 69.78%; H, 9.05%.

4.3.10. 2-(4-Fluorophenyl)heptane-2,3-diol (**2l**). Compound **2l**: 50:50 mixture of two diastereomers. Colorless

paste. R_f 0.35 (hexanes/ethyl acetate=2:1, silica gel). IR (neat) 3337, 1601, 1508, 835, 818 cm⁻¹. ¹H NMR (CDCl₃) δ 0.82 (t, 1.5H, *J*=7.3 Hz), 0.85 (t, 1.5H, *J*=7.3 Hz), 1.11– 1.50 (m, 6H), 1.51 (s, 1.5H), 1.58 (s, 1.5H), 2.01 (br s, 0.5H), 2.15 (br s, 0.5H), 2.57 (br s, 0.5H), 2.69 (br s, 0.5H), 3.59–3.64 (m, 0.5H), 3.64–3.69 (m, 0.5H), 7.00–7.06 (m, 2H), 7.35–7.39 (m, 1H), 7.41–7.46 (m, 1H). ¹³C NMR (CDCl₃) δ 13.85 (q), 13.86 (q), 22.4 (t), 22.5 (t), 26.81 (q), 26.84 (q), 28.5 (t), 28.6 (t), 30.2 (t), 30.8 (t), 76.3 (s), 76.5 (s), 78.3 (d), 78.5 (d), 114.7 (d, *J*_{CCCF}=21.1 Hz), 114.8 (d, *J*_{CCF}=21.1 Hz), 127.1 (d, *J*_{CCCF}=7.7 Hz), 127.5 (d, *J*_{CCCF}= 7.7 Hz), 140.6 (s, *J*_{CCCCF}=2.9 Hz), 141.4 (s, *J*_{CCCCF}= 2.9 Hz), 161.7 (s, *J*_{CF}=245.7 Hz), 161.8 (s, *J*_{CF}=245.7 Hz). Anal. Calcd for C₁₃H₁₉FO₂: C, 69.00%; H, 8.46%. Found: C, 68.77%; H, 8.31%.

4.3.11. 2-(4-Fluorophenyl)-4-methylpentane-2,3-diol (2m). Compound 2m: 50:50 mixture of two diastereomers. White solid. $R_f 0.5$ (hexanes/ethyl acetate=2:1). ¹H NMR (CDCl₃) δ 0.77 (d, 1.5H, J=7.1 Hz), 0.84 (d, 1.5H, J= 7.0 Hz), 0.89 (d, 1.5H, J=6.6 Hz), 0.98 (d, 1.5H, J=6.8 Hz), 1.44-1.51 (m, 0.5H), 1.54 (s, 1.5H), 1.60 (s, 1.5H), 1.87 (br d, 0.5H, J=4.7 Hz), 1.92-1.99 (m, 0.5H), 2.06 (br d, 0.5H, J=7.1 Hz), 2.38 (br s, 0.5H), 2.71 (br s, 0.5H), 3.56 (dd, 0.5H, J=2.7, 6.9 Hz), 3.62 (t, 0.5H, J=3.8 Hz), 7.00-7.06 (m, 2H), 7.37–7.46 (m, 2H). ¹³C NMR (CDCl₃) δ 15.5 (q), 16.5 (q), 22.07 (q), 22.09 (q), 24.2 (q), 28.7 (d), 28.8 (d), 29.2 (q), 76.5 (s), 76.9 (s), 81.2 (d), 81.6 (d), 114.74 (d, $J_{CCF}=21.1$ Hz), 114.75 (d, $J_{CCF}=21.1$ Hz), 126.6 (d, $J_{CCCF}=7.7$ Hz), 127.2 (d, $J_{CCCF}=7.7$ Hz), 141.1 (s, $J_{\text{CCCCF}}=2.9 \text{ Hz}$), 142.8 (s, $J_{\text{CCCCF}}=2.9 \text{ Hz}$), 161.5 (s, J_{CF} =244.2 Hz), 161.7 (s, J_{CF} =245.2 Hz). Anal. Calcd for C12H17FO2: C, 67.90%; H, 8.07%. Found: C, 68.07%; H, 8.16%.

4.3.12. 2-(4-Fluorophenyl)-3-methylbutane-2,3-diol (2n). White solid. R_f 0.35 (hexanes/ethyl acetate=2:1, silica gel). Mp 63–64 °C. IR (KBr) 3412, 1603, 1508, 922, 839, 827 cm⁻¹. ¹H NMR (CDCl₃) δ 1.06 (s, 3H), 1.25 (s, 3H), 1.62 (s, 3H), 2.11 (br s, 1H), 2.76 (br s, 1H), 6.97–7.03 (m, 2H), 7.43–7.49 (m, 2H). ¹³C NMR (CDCl₃) δ 24.2 (q), 24.7 (q), 25.0 (q), 75.2 (s), 78.1 (s), 114.1 (d, J_{CCF} =21.1 Hz), 128.4 (d, J_{CCCF} =7.7 Hz), 140.4 (s, J_{CCCF} =2.9 Hz), 161.7 (s, J_{CF} =243.8 Hz). Anal. Calcd for C₁₁H₁₅FO₂: C, 66.65%; H, 7.63%. Found: C, 66.68%; H, 7.56%.

4.3.13. 4-Methyl-1-(naphthalen-2-yl)pentane-2,3-diol (20). Compound 20: 70:30 mixture of two diastereomers. Colorless paste. R_f 0.5 (hexanes/ethyl acetate=2:1). ¹H NMR (CDCl₃) δ 0.74 (d, 0.9H, J=6.8 Hz), 0.779 (d, 2.1H, J=6.9 Hz), 0.784 (d, 2.1H, J=6.7 Hz), 1.04 (d, 0.9H, J=6.6 Hz), 1.22–1.27 (m, 0.3H), 1.35–1.42 (m, 0.7H), 1.84 (s, 0.9H), 1.85 (s, 2.1H), 2.30 (br s, 0.7H), 2.84 (br s, 0.7H), 2.84 (br s, 0.7H), 3.33 (br s, 0.3H), 4.35 (dd, 0.7H, J=2.4, 7.3 Hz), 4.38 (t, 0.3H, J=4.1 Hz), 7.40-7.50 (m, 3H), 7.72-7.79 (m, 1.3H), 7.84-7.89 (m, 1H), 7.96-7.99 (m, 0.7H), 8.13 (br d, 0.7H, J=8.3 Hz), 8.51 (br d, 0.3H, J=8.3 Hz). ¹³C NMR (CDCl₃) δ 15.3 (q), 17.4 (q), 21.7 (q), 21.8 (q), 24.1 (q), 28.8 (q), 29.1 (d), 29.4 (d), 78.2 (s), 78.3 (s), 79.0 (d), 79.1 (d), 123.9 (d), 124.6 (d), 124.7 (d), 124.9 (d), 125.0 (d), 125.1 (d), 125.3 (d), 126.4 (d), 128.0 (d), 128.6 (d), 129.1 (d), 129.3 (d), 130.1 (s), 130.7 (s), 134.4 (s), 134.8 (s), 141.6 (s), 141.7 (s). Anal. Calcd for

 $C_{15}H_{20}O_2{:}$ C, 78.65%; H, 8.25%. Found: C, 78.83%; H, 8.35%.

4.3.14. 4-Methyl-2-(naphthalen-2-yl)pentane-2,3-diol (**2p).** Compound **2p**: less polar isomer. White solid. R_f 0.5 (hexanes/ethyl acetate=2:1). Mp 85–86 °C. ¹H NMR (CDCl₃) δ 0.92 (d, 3H, J=6.8 Hz), 1.02 (d, 3H, J=6.8 Hz), 1.63 (s, 3H), 1.90 (d, 1H, J=4.1 Hz), 2.00–2.07 (m, 1H), 2.87 (s, 1H), 3.77 (t, 1H, J=3.6 Hz), 7.43–7.50 (m, 2H), 7.53–7.57 (m, 1H), 7.78–7.86 (m, 3H), 7.94–7.96 (m, 1H). ¹³C NMR (CDCl₃) δ 16.5 (q), 22.3 (q), 24.5 (q), 28.8 (d), 77.3 (s), 81.3 (d), 123.8 (d), 124.1 (d), 125.9 (d), 126.1 (d), 127.4 (d), 128.0 (d), 128.2 (d), 132.4 (s), 133.1 (s), 144.4 (s). Anal. Calcd for C₁₅H₂₀O₂: C, 78.65%; H, 8.25%. Found: C, 78.61%; H, 8.28%.

4.3.15. 4-Methyl-2-(naphthalen-2-yl)pentane-2,3-diol (**2p).** Compound **2p**: more less isomer. White solid. R_f 0.4 (hexanes/ethyl acetate=2:1). Mp 115–117 °C. ¹H NMR (CDCl₃) δ 0.80 (d, 3H, *J*=6.7 Hz), 0.83 (d, 3H, *J*=7.0 Hz), 1.45–1.54 (m, 1H), 1.69 (s, 3H), 2.24 (br s, 1H), 2.50 (br s, 1H), 3.71 (d, 1H, *J*=2.5 Hz), 7.43–7.50 (m, 3H), 7.79–7.87 (m, 3H), 7.95–7.98 (m, 1H). ¹³C NMR (CDCl₃) δ 15.6 (q), 22.1 (q), 29.0 (d), 29.5 (q), 77.5 (s), 81.0 (d), 123.4 (d), 123.5 (d), 125.7 (d), 126.0 (d), 127.4 (d), 127.7 (d), 128.1 (d), 132.2 (s), 133.2 (s), 142.9 (s). Anal. Calcd for C₁₅H₂₀O₂: C, 78.65%; H, 8.25%. Found: C, 78.66%; H, 8.29%.

4.3.16. 1-(1-Hydroxypentyl)-1,2,3,4-tetrahydronaphthalen-1-ol (2q). Compound **2q**: less polar isomer. White solid. R_f 0.55 (hexanes/ethyl acetate=2:1, silica gel). Mp 58– 59 °C. IR (KBr) 3553, 3447, 1489, 964, 949, 775, 745 cm⁻¹. ¹H NMR (CDCl₃) δ 0.89 (t, 3H, *J*=7.3 Hz), 1.22–2.30 (m, 12H), 2.64–2.83 (m, 2H), 3.83–3.88 (m, 1H), 7.08–7.14 (m, 1H), 7.16–7.25 (m, 2H), 7.66–7.72 (m, 1H). ¹³C NMR (CDCl₃) δ 14.0 (q), 19.0 (q), 22.7 (t), 29.2 (t), 29.8 (t), 30.5 (t), 32.9 (t), 73.7 (s), 77.4 (d), 126.2 (d), 126.9 (d), 127.3 (d), 128.9 (d), 138.5 (s), 139.2 (s). Anal. Calcd for C₁₅H₂₂O₂: C, 76.88%; H, 9.46%. Found: C, 76.80%; H, 9.52%.

4.3.17. 1-(1-Hydroxypentyl)-1,2,3,4-tetrahydronaphthalen-1-ol (2q). Compound **2q**: more polar isomer. White solid. R_f 0.3 (hexanes/ethyl acetate=2:1, silica gel). Mp 67–69 °C. IR (KBr) 3360, 1489, 941, 903, 762, 733 cm⁻¹. ¹H NMR (CDCl₃) δ 0.80 (t, 3H, *J*=7.3 Hz), 1.09–1.98 (m, 10H), 2.60–2.81 (m, 2H), 3.15 (br s, 2H), 4.00–4.05 (m, 1H), 7.06–7.12 (m, 1H), 7.14–7.20 (m, 2H), 7.35–7.41 (m, 1H). ¹³C NMR (CDCl₃) δ 13.9 (q), 19.1 (t), 22.4 (t), 29.1 (t), 30.3 (t), 30.6 (t), 31.2 (t), 74.5 (s), 78.4 (d), 126.2 (d), 126.3 (d), 127.2 (d), 129.0 (d), 138.2 (s), 138.8 (s). Anal. Calcd for C₁₅H₂₂O₂: C, 76.88%; H, 9.46%. Found: C, 76.91%; H, 9.40%.

4.3.18. 1-(1-Hydroxy-2-methylpropyl)-1,2,3,4-tetrahydronaphthalen-1-ol (2r). Compound **2r**: less polar isomer. White solid. R_f 0.65 (hexanes/ethyl acetate=2:1). Mp 86 °C. ¹H NMR (CDCl₃) δ 0.95 (d, 3H, *J*=6.9 Hz), 0.98 (d, 3H, *J*=6.4 Hz), 1.76–1.99 (m, 5H), 2.09 (br s, 1H), 2.17–2.25 (m, 1H), 2.69–2.83 (m, 2H), 3.62 (t, 1H, *J*=5.0 Hz), 7.09– 7.13 (m, 1H), 7.18–7.25 (m, 2H), 7.68–7.72 (m, 1H). ¹³C NMR (CDCl₃) δ 18.4 (q), 19.1 (t), 22.1 (q), 29.0 (d), 29.4 (t), 33.8 (t), 74.8 (q), 80.3 (d), 126.1 (d), 126.8 (d), 127.3 (d), 128.9 (d), 138.0 (s), 139.8 (s). Anal. Calcd for $C_{14}H_{20}O_2\!\!:$ C, 76.33%; H, 9.15%. Found: C, 76.32%; H, 9.17%.

4.3.19. 1-(1-Hydroxy-2-methylpropyl)-1,2,3,4-tetrahydronaphthalen-1-ol (2r). Compound **2r**: more polar isomer. Colorless paste. R_f 0.55 (hexanes/ethyl acetate=2:1). ¹H NMR (CDCl₃) δ 0.50 (d, 3H, J=6.9 Hz), 1.04 (d, 3H, J=6.4 Hz), 1.07–2.03 (m, 5H), 2.56 (br s, 1H), 2.64–2.88 (m, 3H), 3.82 (d, 1H, J=6.0 Hz), 7.08–7.12 (m, 1H), 7.16– 7.22 (m, 2H), 7.45–7.49 (m, 1H). ¹³C NMR (CDCl₃) δ 19.0 (t), 19.2 (q), 20.9 (q), 30.1 (d), 30.2 (t), 30.8 (t), 73.8 (q), 81.5 (d), 125.9 (d), 126.7 (d), 127.3 (d), 129.2 (d), 137.5 (s), 140.1 (s). Anal. Calcd for C₁₄H₂₀O₂: C, 76.33%; H, 9.15%. Found: C, 76.35%; H, 9.10%.

4.3.20. (1*R**,2*S**)-1-Methyl-2-phenylcyclobutane-1,2diol (*trans*-7a). Colorless paste. R_f 0.3 (hexanes/ethyl acetate=2:1, silica gel). IR (neat) 3412, 1497, 974, 772, 748, 700 cm⁻¹. ¹H NMR (CDCl₃) δ 1.50 (s, 3H), 1.62–1.70 (m, 1H), 1.85–1.93 (m, 1H), 2.00–2.07 (m, 1H), 2.60–2.68 (m, 1H), 7.32–7.36 (m, 1H), 7.40–7.45 (m, 2H), 7.51–7.56 (m, 2H). ¹³C NMR (CDCl₃) δ 21.8 (q), 28.5 (t), 31.6 (t), 77.9 (s), 82.1 (s), 126.6 (d), 127.9 (d), 128.6 (d), 140.1 (s). Anal. Calcd for C₁₁H₁₄O₂: C, 74.13%; H, 7.92%. Found: C, 74.28%; H, 7.84%.

4.3.21. (1*R**,2*R**)-1-Methyl-2-phenylcyclobutane-1,2diol (*cis*-7a). Pale yellow paste. R_f 0.35 (hexanes/ethyl acetate=2:1, silica gel). IR (neat) 3447, 3310, 986, 750, 696, 654 cm⁻¹. ¹H NMR (CDCl₃) δ 1.01 (s, 3H), 1.93–2.04 (m, 2H), 2.25–2.33 (m, 1H), 2.36–2.44 (m, 1H), 2.73 (br s, 1H), 3.23 (br s, 1H), 7.27–7.38 (m, 5H). ¹³C NMR (CDCl₃) δ 23.6 (q), 25.8 (t), 33.8 (t), 76.0 (s), 81.9 (s), 126.0 (d), 127.6 (d), 128.2 (d), 141.9 (d).

4.3.22. (*IR**,2*S**)-1-(4-Methoxyphenyl)-2-methylcyclobutane-1,2-diol (*trans*-7b). Colorless paste. R_f 0.25 (hexanes/ethyl acetate=2:1, silica gel). ¹H NMR (CDCl₃) δ 1.50 (s, 3H), 1.56–1.66 (m, 1H), 1.84–1.92 (m, 1H), 1.99–2.03 (m, 1H), 2.59–2.64 (m, 1H), 2.67 (br s, 1H), 3.27 (br s, 1H), 6.94–6.98 (m, 2H), 7.45–7.49 (m, 2H). ¹³C NMR (CDCl₃) δ 21.6 (q), 28.4 (t), 31.5 (t), 55.1 (q), 77.8 (s), 81.6 (s), 127.1 (d), 127.8 (d), 132.1 (s), 159.0 (s). Anal. Calcd for C₁₂H₁₆O₃: C, 69.21%; H, 7.74%. Found: C, 68.97%; H, 7.66%.

4.3.23. (*IR**,*2R**)-1-(4-Methoxyphenyl)-2-methylcyclobutane-1,2-diol (*cis*-7b). Yellow paste. R_f 0.3 (hexanes/ ethyl acetate=2:1, silica gel). IR (neat) 3427, 3256, 1612, 1582, 1514, 991, 843, 812 cm⁻¹. ¹H NMR (CDCl₃) δ 1.00 (s, 3H), 1.91–2.01 (m, 2H), 2.23–2.39 (m, 2H), 2.69 (s, 1H), 3.29 (s, 1H), 3.81 (s, 3H), 6.86–6.90 (m, 2H), 7.25–7.29 (m, 2H). ¹³C NMR (CDCl₃) δ 23.4 (q), 26.0 (t), 33.9 (t), 55.2 (q), 76.0 (s), 81.8 (s), 113.6 (d), 127.2 (d), 134.3 (s), 159.0 (s).

4.3.24. (1*R**,2*S**)-1-(4-Fluorophenyl)-2-methylcyclobutane-1,2-diol (*trans*-7c). Pale yellow paste. R_f 0.35 (hexanes/ethyl acetate=2:1, silica gel). IR (neat) 3398, 1603, 1508, 972, 833, 814, 756, 656 cm⁻¹. ¹H NMR (CDCl₃) δ 1.49 (s, 3H), 1.60–1.68 (m, 1H), 1.85–1.93 (m, 1H), 2.01–2.07 (m, 1H), 2.03 (s, 1H), 2.27 (br s, 1H), 2.57–2.64 (m, 1H), 7.07–7.13 (m, 2H), 7.48–7.53 (m, 2H). ¹³C NMR (CDCl₃) δ 21.8 (q), 28.8 (t), 31.5 (t), 77.9 (s), 81.7 (s),

115.3 (d, $J_{CCCF}=21.1$ Hz), 128.4 (d, $J_{CCCF}=7.7$ Hz), 136.1 (s, $J_{CCCF}=2.9$ Hz), 162.3 (s, $J_{CF}=246.6$ Hz). Anal. Calcd for C₁₁H₁₃FO₂: C, 67.33%; H, 6.68%. Found: C, 67.18%; H, 6.60%.

4.3.25. (1*R**,2*R**)-1-(4-Fluorophenyl)-2-methylcyclobutane-1,2-diol (*cis*-7c). White solid. R_f 0.3 (hexanes/ethyl acetate=2:1, silica gel). Mp 49–51 °C. IR (KBr) 3391, 3271, 1599, 1510, 991, 831, 758, 673 cm⁻¹. ¹H NMR (CDCl₃) δ 0.97 (s, 3H), 1.92–2.00 (m, 2H), 2.23–2.30 (m, 1H), 2.31–2.39 (m, 1H), 3.05 (br s, 1H), 3.30 (br s, 1H), 7.00–7.06 (m, 2H), 7.29–7.33 (m, 2H). ¹³C NMR (CDCl₃) δ 23.4 (q), 26.1 (t), 33.7 (t), 76.0 (s), 81.4 (s), 115.1 (d, $J_{CCCF}=21.1$ Hz), 127.8 (d, $J_{CCCF}=7.7$ Hz), 137.8 (s, $J_{CCCCF}=2.9$ Hz), 162.2 (s, $J_{CF}=245.7$ Hz). Anal. Calcd for C₁₁H₁₃FO₂: C, 67.33%; H, 6.68%. Found: C, 67.25%; H, 6.67%.

4.3.26. (1*R**,2*S**)-1-Methyl-2-phenylcyclopentane-1,2diol (*trans*-8a). Colorless paste. R_f 0.3 (hexanes/ethyl acetate=5:1, silica gel). ¹H NMR (CDCl₃) δ 0.97 (br s, 1H), 1.17 (s, 3H), 1.57 (br s, 1H), 1.71–1.78 (m, 1H), 1.87–2.00 (m, 3H), 2.06–2.15 (m, 1H), 2.81–2.88 (m, 1H), 7.29–7.33 (m, 1H), 7.36–7.41 (m, 2H), 7.59–7.62 (m, 2H). ¹³C NMR (CDCl₃) δ 19.4 (t), 20.9 (q), 37.6 (t), 37.8 (t), 82.4 (s), 85.6 (s), 127.0 (d), 127.4 (d), 128.0 (d), 141.2 (s).

4.3.27. (1*R**,2*R**)-1-Methyl-2-phenylcyclopentane-1,2diol (*cis*-8a). White solid. R_f 0.1 (hexanes/ethyl acetate=5:1, silica gel). Mp 95–97 °C. ¹H NMR (CDCl₃) δ 0.92 (s, 3H), 1.70–1.79 (m, 1H), 1.81–1.89 (m, 1H), 1.97–2.10 (m, 3H), 2.38 (br s, 1H), 2.43–2.51 (m, 1H), 2.92 (br s, 1H), 7.25–7.30 (m, 1H), 7.31–7.36 (m, 2H), 7.47–7.51 (m, 2H). ¹³C NMR (CDCl₃) δ 18.5 (t), 24.6 (q), 35.7 (t), 38.1 (t), 81.9 (s), 83.5 (s), 126.3 (d), 127.2 (d), 127.9 (d), 142.9 (s).

4.3.28. (*IR**,*2S**)-1-(4-Methoxyphenyl)-2-methylcyclopentane-1,2-diol (*trans*-8b). White solid. R_f 0.3 (hexanes/ethyl acetate=2:1, silica gel). Mp 55–57 °C. IR (KBr) 3398, 3292, 1611, 1580, 1512, 970, 957, 831, 814 cm⁻¹. ¹H NMR (CDCl₃) δ 0.92 (s, 3H), 1.65–1.87 (m, 2H), 1.94–2.08 (m, 3H), 2.39–2.47 (m, 2H), 3.80 (s, 3H), 6.85–6.89 (m, 2H), 7.39–7.43 (m, 2H). ¹³C NMR (CDCl₃) δ 18.4 (t), 24.5 (q), 35.7 (t), 38.1 (t), 55.2 (q), 81.9 (s), 83.2 (s), 113.1 (d), 127.4 (d), 135.0 (s), 158.6 (s). Anal. Calcd for C₁₃H₁₈O₃: C, 70.24%; H, 8.16%. Found: C, 70.19%; H, 8.20%.

4.3.29. (*IR**,*2R**)-1-(4-Methoxyphenyl)-2-methylcyclopentane-1,2-diol (*cis*-8b). White solid. R_f 0.6 (hexanes/ethyl acetate=2:1, silica gel). Mp 98–100 °C. IR (KBr) 3479, 3508, 3435, 1609, 1512, 980, 941, 908, 870, 833, 816, 793 cm⁻¹. ¹H NMR (CDCl₃) δ 0.96 (br s, 1H), 1.17 (s, 3H), 1.52 (s, 1H), 1.69–1.76 (m, 1H), 1.85–1.98 (m, 3H), 2.04–2.15 (m, 1H), 2.77–2.86 (m, 1H), 3.82 (s, 3H), 6.90–6.93 (m, 2H), 7.51–7.54 (m, 2H). ¹³C NMR (CDCl₃) δ 12.3 (t), 20.9 (q), 37.5 (t), 37.9 (t), 55.2 (q), 82.2 (s), 85.4 (s), 113.3 (d), 128.2 (d), 133.2 (s), 159.0 (s). Anal. Calcd for C₁₃H₁₈O₃: C, 70.24%; H, 8.16%. Found: C, 70.28%; H, 8.17%.

4.3.30. ($1R^*$,2 S^*)-1-(4-Fluorophenyl)-2-methylcyclopentane-1,2-diol (*trans*-8c). White solid. R_f 0.55 (hexanes/ethyl acetate=2:1, silica gel). Mp 105–107 °C. IR (KBr) 3391, 1601, 1506, 974, 945, 930, 910, 870, 829, 812 cm⁻¹. ¹H NMR (CDCl₃) δ 0.98 (br s, 1H), 1.14 (s, 3H), 1.65 (br s, 1H), 1.69–1.75 (m, 1H), 1.83–1.95 (m, 3H), 2.05–2.13 (m, 1H), 2.74–2.81 (m, 1H), 7.01–7.07 (m, 2H), 7.53–7.58 (m, 2H). ¹³C NMR (CDCl₃) δ 19.2 (t), 20.7 (q), 37.6 (t), 38.0 (t), 82.3 (s), 85.2 (s), 114.6 (d, J_{CCCF} =21.1 Hz), 128.8 (d, J_{CCCF} =7.7 Hz), 137.1 (s, J_{CCCCF} =2.9 Hz), 162.2 (s, J_{CF} =245.7 Hz). Anal. Calcd for C₁₂H₁₅FO₂: C, 68.55%; H, 7.19%. Found: C, 68.62%; H, 7.14%.

4.3.31. (*1R**,2*R**)-1-(4-Fluorophenyl)-2-methylcyclopentane-1,2-diol (*cis*-8c). White solid. R_f 0.5 (hexanes/ethyl acetate=2:1, silica gel). Mp 74–76 °C. IR (KBr) 3437, 3304, 1603, 1508, 970, 833, 812 cm⁻¹. ¹H NMR (CDCl₃) δ 0.86 (s, 3H), 1.65–1.83 (m, 2H), 1.91–2.05 (m, 3H), 2.31–2.42 (m, 1H), 2.63–2.85 (m, 1H), 3.17–3.38 (m, 1H), 6.95–7.01 (m, 2H), 7.39–7.45 (m, 2H). ¹³C NMR (CDCl₃) δ 18.3 (t), 24.2 (q), 35.6 (t), 38.0 (t), 81.7 (s), 83.0 (s), 114.3 (d, J_{CCF} =21.1 Hz), 128.0 (d, J_{CCCF} =7.7 Hz), 138.8 (s, J_{CCCCF} =2.9 Hz), 161.8 (s, J_{CF} =244.7 Hz). Anal. Calcd for C₁₂H₁₅FO₂: C, 68.55%; H, 7.19%. Found: C, 68.60%; H, 7.13%.

4.3.32. (*IR**,2*S**)-1-Methyl-2-phenylcyclohexane-1,2diol (*trans-9a*). White solid. R_f 0.35 (hexanes/ethyl acetate=5:1, silica gel). Mp 93–95 °C. ¹H NMR (CDCl₃) δ 0.97 (s, 3H), 1.18 (br s, 1H), 1.45–1.51 (m, 1H), 1.55–1.81 (m, 6H), 1.90–1.97 (m, 1H), 2.59–2.67 (m, 1H), 7.25–7.30 (m, 1H), 7.33–7.38 (m, 2H), 7.58–7.62 (m, 2H). ¹³C NMR (CDCl₃) δ 20.8 (t), 21.0 (t), 25.4 (q), 34.5 (t), 35.5 (t), 72.5 (s), 77.1 (s), 126.8 (d), 127.0 (d), 127.7 (d), 144.6 (s).

4.3.33. (1*R**,2*R**)-1-Methyl-2-phenylcyclohexane-1,2diol (*cis*-9a). White solid. R_f 0.15 (hexanes/ethyl acetate=2:1, silica gel). Mp 99–101 °C. ¹H NMR (CDCl₃) δ 1.05 (s, 3H), 1.40–1.52 (m, 1H), 1.57–1.89 (m, 6H), 1.94–2.02 (m, 1H), 2.20–2.28 (m, 1H), 2.88 (s, 1H), 7.25–7.29 (m, 1H), 7.33–7.37 (m, 2H), 7.45–7.49 (m, 2H). ¹³C NMR (CDCl₃) δ 20.6 (t), 23.3 (t), 23.4 (q), 33.9 (t), 36.6 (t), 74.0 (s), 76.6 (s), 126.6 (d), 126.7 (d), 127.3 (d), 144.1 (s).

4.3.34. (*1R**,2*S**)-1-(4-Methoxyphenyl)-2-methylcyclohexane-1,2-diol (*trans-9b*). White solid. R_f 0.55 (hexanes/ ethyl acetate=2:1, silica gel). Mp 95–96 °C. IR (KBr) 3539, 3506, 3433, 1607, 1578, 1510, 991, 924, 891, 835, 804 cm⁻¹. ¹H NMR (CDCl₃) δ 0.98 (s, 3H), 1.17 (br s, 1H), 1.43–1.49 (m, 1H), 1.52–1.79 (m, 6H), 1.87–1.95 (m, 1H), 2.56–2.63 (m, 1H), 3.81 (s, 3H), 6.87–6.90 (m, 2H), 7.49–7.53 (m, 2H). ¹³C NMR (CDCl₃) δ 20.9 (t), 21.0 (t), 25.3 (q), 34.6 (t), 35.2 (t), 55.1 (q), 72.6 (s), 76.8 (s), 112.9 (d), 128.0 (d), 136.8 (s), 158.5 (s). Anal. Calcd for C₁₄H₂₀O₃: C, 71.16%; H, 8.53%. Found: C, 71.19%; H, 8.53%.

4.3.35. (*IR**,*2R**)-1-(4-Methoxyphenyl)-2-methylcyclohexane-1,2-diol (*cis*-9b). White solid. R_f 0.3 (hexanes/ethyl acetate=2:1, silica gel). Mp 106–107 °C. IR (KBr) 3447, 3323, 1611, 1583, 1512, 976, 926, 829, 810, 775 cm⁻¹. ¹H NMR (CDCl₃) δ 1.04 (s, 3H), 1.39–1.50 (m, 1H), 1.56–1.65 (m, 3H), 1.72–1.87 (m, 3H), 1.92–2.01 (m, 1H), 2.16–2.25 (m, 1H), 2.74 (s, 1H), 3.81 (s, 3H), 6.86–6.90 (m, 2H), 7.37–7.41 (m, 2H). ¹³C NMR (CDCl₃) δ 20.8 (t),

23.47 (t), 23.54 (t), 34.3 (t), 36.7 (t), 55.1 (q), 74.4 (s), 76.9 (s), 112.8 (d), 127.9 (d), 136.5 (s), 158.3 (s). Anal. Calcd for $C_{14}H_{20}O_3$: C, 71.16%; H, 8.53%. Found: C, 71.11%; H, 8.50%.

4.3.36. (1*R**,2*S**)-1-(4-Fluorophenyl)-2-methylcyclohexane-1,2-diol (*trans-9c*). White solid. R_f 0.7 (hexanes/ethyl acetate=2:1, silica gel). Mp 113–115 °C. IR (KBr) 3420, 1603, 1508, 889, 831, 818, 773 cm⁻¹. ¹H NMR (CDCl₃) δ 0.97 (s, 3H), 1.12 (br s, 1H), 1.44–1.50 (m, 1H), 1.56– 1.80 (m, 6H), 1.89–1.97 (m, 1H), 2.55–2.63 (m, 1H), 7.00–7.05 (m, 2H), 7.56–7.60 (m, 2H). ¹³C NMR (CDCl₃) δ 20.9 (t), 21.0 (t), 25.3 (q), 34.7 (t), 35.4 (t), 72.6 (s), 76.8 (s), 114.3 (d, $J_{CCF}=21.1$ Hz), 128.6 (d, $J_{CCCF}=7.7$ Hz), 140.4 (s, $J_{CCCF}=2.9$ Hz), 162.0 (s, $J_{CF}=245.7$ Hz). Anal. Calcd for C₁₃H₁₇FO₂: C, 69.62%; H, 7.64%. Found: C, 69.68%; H, 7.65%.

4.3.37. (1*R**,2*R**)-1-(4-Fluorophenyl)-2-methylcyclohexane-1,2-diol (*cis*-9c). White solid. R_f 0.5 (hexanes/ethyl acetate=2:1, silica gel). Mp 132–134 °C. IR (neat) 3435, 3292, 1607, 1510, 974, 922, 833, 822, 781 cm⁻¹. ¹H NMR (CDCl₃) δ 1.04 (s, 3H), 1.39–1.50 (m, 1H), 1.59–1.66 (m, 2H), 1.72–1.86 (m, 4H), 1.93–2.00 (m, 1H), 2.17–2.24 (m, 1H), 2.79 (br s, 1H), 7.00–7.05 (m, 2H), 7.42–7.47 (m, 2H). ¹³C NMR (CDCl₃) δ 20.8 (t), 23.5 (t and q), 34.4 (t), 36.9 (t), 74.2 (s), 77.0 (s), 114.1 (d, J_{CCF} =21.1 Hz), 128.6 (d, J_{CCCF} =7.7 Hz), 140.2 (s, J_{CCCF} =2.9 Hz), 161.8 (s, J_{CF} =245.7 Hz). Anal. Calcd for C₁₃H₁₇FO₂: C, 69.62%; H, 7.64%. Found: C, 69.54%; H, 7.60%.

4.3.38. (7*R**,9*R**)-Ethyl 9-hydroxy-9-methyl-10-oxo-5,6,7,8,9,10-hexahydrobenzo[8]annulene-7-carboxylate (11). Colorless paste. R_f 0.55 (hexanes/ethyl acetate=2:1, silica gel). IR (neat) 3489, 1728, 1695, 1601, 964, 760, 745 cm⁻¹. ¹H NMR (CDCl₃) δ 1.26 (t, 3H, *J*=7.3 Hz), 1.33 (s, 3H), 2.01–2.09 (m, 3H), 2.19–2.24 (m, 1H), 2.86– 3.03 (m, 3H), 4.09 (br s, 1H), 4.12–4.18 (m, 2H), 7.05– 7.08 (m, 1H), 7.19–7.25 (m, 2H), 7.33–7.37 (m, 1H). ¹³C NMR (CDCl₃) δ 14.0 (q), 26.8 (t), 28.3 (q), 30.8 (t), 37.0 (t), 39.7 (d), 60.4 (t), 78.7 (s), 125.5 (d), 126.5 (d), 129.5 (d), 129.8 (d), 136.2 (s), 138.7 (s), 175.1 (s), 214.6 (s). Anal. Calcd for C₁₆H₂₀O₄: C, 69.54%; H, 7.30%. Found: C, 69.33%; H, 7.15%.

4.3.39. (1*R**,2a*R**,8b*R**)-Ethyl 1,8b-dihydroxy-1-methyl-1,2,2a,3,4,8b-hexahydrocyclobuta[*a*]naphthalene-2acarboxylate (*trans*-12). Colorless paste. R_f 0.5 (hexanes/ ethyl acetate=5:1, silica gel). IR (neat) 3462, 1705, 1489, 912, 754, 737 cm⁻¹. ¹H NMR (CDCl₃) δ 1.12 (br s, 1H), 1.30 (t, 3H, *J*=7.3 Hz), 1.47 (s, 3H), 1.89 (d, 1H, *J*= 13.0 Hz), 1.97–2.09 (m, 2H), 2.57 (d, 1H, *J*=13. 0 Hz), 2.80–2.93 (m, 2H), 3.91 (br s, 1H), 4.22–4.29 (m, 2H), 7.18–7.21 (m, 1H), 7.24–7.28 (m, 1H), 7.29–7.33 (m, 1H), 7.56–7.59 (m, 1H). ¹³C NMR (CDCl₃) δ 14.0 (q), 22.8 (q), 25.9 (t), 27.0 (t), 37.1 (t), 47.4 (s), 60.9 (t), 76.7 (s), 78.6 (s), 126.5 (d), 127.4 (d), 127.6 (d), 128.2 (d), 135.9 (s), 136.6 (s), 175.8 (s). Anal. Calcd for C₁₆H₂₀O₄: C, 69.54%; H, 7.30%. Found: C, 69.41%; H, 7.20%.

4.3.40. (1R*,2aS*,8bS*)-Ethyl 1,8b-dihydroxy-1-methyl-1,2,2a,3,4,8b-hexahydrocyclobuta[a]naphthalene-2acarboxylate (*cis*-12). White solid. R_f 0.5 (hexanes/ethyl acetate=2:1, silica gel). Mp 105–106 °C. IR (KBr) 3350, 1709, 1487, 1001, 961, 935, 907, 748, 739 cm⁻¹. ¹H NMR (CDCl₃) δ 0.79 (s, 3H), 1.30 (t, 3H, *J*=7.3 Hz), 1.85–1.90 (m, 1H), 2.02 (d, 1H, *J*=13.3 Hz), 2.10–2.18 (m, 1H), 2.43 (d, 1H, *J*=13.3 Hz), 2.68–2.76 (m, 1H), 2.88–2.99 (m, 1H), 4.27 (q, 2H, *J*=7.3 Hz), 4.38 (s, 1H), 4.55 (s, 1H), 7.15 (d, 1H, *J*=7.3 Hz), 7.20–7.28 (m, 2H), 7.51–7.54 (m, 1H). ¹³C NMR (CDCl₃) δ 14.1 (q), 23.9 (q), 25.5 (t), 26.0 (t), 36.7 (t), 51.4 (s), 61.6 (t), 75.4 (s), 77.1 (s), 126.5 (d), 127.1 (d), 127.6 (d), 128.3 (d), 136.0 (s), 136.7 (s), 177.6 (s). Anal. Calcd for C₁₆H₂₀O₄: C, 69.54%; H, 7.30%. Found: C, 69.56%; H, 7.33%.

4.3.41. (1R*,3aR*,9bR*)-Ethyl 1,9b-dihydroxy-1-methyl-2,3,3a,4,5,9b-hexahvdro-1*H*-cyclopenta[*a*]naphthalene-**3a-carboxylate** (*trans-14*). White solid. R_f 0.75 (hexanes/ ethyl acetate=5:1, silica gel). Mp 100-101 °C. IR (KBr) 3524, 3404, 1705, 1487, 939, 926, 866, 758, 733 cm⁻¹. ¹H NMR (CDCl₃) δ 0.75 (s, 3H), 1.23 (t, 3H, J=7.1 Hz), 1.40 (s, 3H), 1.89-1.96 (m, 1H), 1.97-2.05 (m, 1H), 2.07-2.17 (m, 2H), 2.34-2.42 (m, 1H), 2.63-2.72 (m, 1H), 2.74-2.88 (m, 2H), 4.10-4.19 (m, 2H), 4.21 (s, 1H), 7.08 (d, 1H, J=7.8 Hz), 7.19 (dt, 1H, J=1.4, 7.8 Hz), 7.24 (t, 1H, J= 7.8 Hz), 7.69 (dd, 1H, J=1.4, 7.8 Hz). ¹³C NMR (CDCl₃) δ 14.1 (q), 23.6 (q), 27.0 (t), 31.5 (t), 32.3 (t), 36.8 (t), 57.2 (s), 60.7 (t), 83.1 (s), 84.1 (s), 126.1 (d), 126.9 (d), 127.4 (d), 128.1 (d), 137.2 (s), 138.2 (s), 177.1 (s). Anal. Calcd for C₁₇H₂₂O₄: C, 70.32%; H, 7.64%. Found: C, 70.33%; H, 7.65%.

4.3.42. (*1R**,3*a*S*,9*b*S*)-Ethyl 1,9*b*-dihydroxy-1-methyl-2,3,3*a*,4,5,9*b*-hexahydro-1*H*-cyclopenta[*a*]naphthalene-3*a*-carboxylate (*cis*-14). Colorless paste. R_f 0.55 (hexanes/ ethyl acetate=2:1, silica gel). IR (neat) 3450, 1719, 1701, 756, 737 cm⁻¹. ¹H NMR (CDCl₃) δ 0.93 (s, 3H), 1.26 (t, 3H, *J*=7.1 Hz), 1.70–1.78 (m, 1H), 1.80–1.88 (m, 1H), 1.99– 2.10 (m, 2H), 2.15–2.22 (m, 1H), 2.51–2.60 (m, 1H), 2.66–2.79 (m, 2H), 4.12 (s, 1H), 4.19 (q, 2H, *J*=7.1 Hz), 4.69 (s, 1H), 7.04–7.07 (m, 1H), 7.15–7.19 (m, 1H), 7.20– 7.24 (m, 1H), 7.64–7.68 (m, 1H). ¹³C NMR (CDCl₃) δ 13.8 (q), 18.9 (t), 24.5 (q), 25.8 (t), 26.8 (t), 31.3 (t), 37.5 (t), 50.8 (s), 60.8 (t), 74.3 (s), 76.5 (s), 125.2 (d), 126.7 (d), 127.5 (d), 127.8 (d), 135.2 (s), 139.3 (s), 177.8 (s). Anal. Calcd for C₁₇H₂₂O₄: C, 70.32%; H, 7.64%. Found: C, 70.24%; H, 7.53%.

4.3.43. (*IR**,10*S**,11*S**)-10-Hydroxy-11-methyl-12-oxatetracyclo[9.2.2.0(1,10).0(4,9)]pentadeca-4(9),5,7-trien-13-one (15). White solid. R_f 0.35 (hexanes/ethyl acetate=2:1, silica gel). Mp 164–165 °C. IR (KBr) 3431, 1753, 1489, 876, 762 cm⁻¹. ¹H NMR (CDCl₃) δ 1.53–1.60 (m, 1H), 1.63–1.71 (m, 1H), 1.71–1.78 (m, 1H), 1.86 (s, 3H), 1.88–1.95 (m, 1H), 2.04–2.09 (m, 2H), 2.16–2.25 (m, 1H), 2.97–3.11 (m, 2H), 7.21–7.26 (m, 2H), 7.28–7.33 (m, 1H), 7.36–7.40 (m, 1H). ¹³C NMR (CDCl₃) δ 15.6 (q), 16.5 (t), 23.3 (t), 25.6 (t), 30.7 (t), 53.8 (s), 82.1 (s), 93.0 (s), 125.9 (d), 126.8 (d), 129.0 (d), 130.2 (d), 134.1 (s), 136.5 (s), 177.4 (s). Anal. Calcd for C₁₅H₁₆O₃: C, 73.75%; H, 6.60%. Found: C, 73.75%; H, 6.62%.

4.3.44. (4b R^* ,5 R^* ,8a S^*)-Ethyl 4b,5-dihydroxy-5-methyl-4b,5,6,7,8,8a,9,10-octahydrophenanthrene-8a-carboxylate (*trans*-17). White solid. R_f 0.25 (hexanes/ethyl acetate=10:1, silica gel). Mp 89–90 °C. IR (KBr) 3435, 1697, 957, 895, 754, 737 cm⁻¹. ¹H NMR (CDCl₃) δ 0.84 (s, 1H), 1.14 (t, 3H, *J*=7.3 Hz), 1.22 (s, 3H), 1.50–1.64 (m, 2H), 1.66–1.73 (m, 1H), 1.94–2.08 (m, 3H), 2.13–2.21 (m, 1H), 2.75–2.85 (m, 1H), 2.86–2.94 (m, 1H), 3.33–3.42 (m, 1H), 4.03 (q, 2H, *J*=7.3 Hz), 5.09 (s, 1H), 7.03–7.07 (m, 1H), 7.14–7.22 (m, 2H), 7.71–7.75 (m, 2H). ¹³C NMR (CDCl₃) δ 13.8 (q), 17.0 (t), 25.7 (t), 26.2 (t), 26.5 (q), 31.2 (t), 34.6 (t), 50.1 (s), 60.0 (t), 74.7 (s), 75.4 (s), 124.7 (d), 126.9 (d), 128.2 (d), 128.5 (d), 137.4 (s), 138.8 (s), 178.9 (s). Anal. Calcd for C₁₈H₂₄O₄: C, 71.03%; H, 7.95%. Found: C, 71.01%; H, 7.94%.

4.3.45. (**4b***R**,**5***S**,**8a***S**)-Ethyl **4b**,**5**-dihydroxy-5-methyl-**4b**,**5**,**6**,**7**,**8**,**8a**,**9**,**10**-octahydrophenanthrene-8a-carboxylate (*cis*-**17**). White solid. *R_f* 0.55 (hexanes/ethyl acetate= 2:1, silica gel). Mp 131–133 °C. IR (neat) 3450, 1701, 964, 737, 702 cm⁻¹. ¹H NMR (CDCl₃) δ 0.91 (s, 3H), 1.17 (t, 3H, *J*=7.3 Hz), 1.63–1.74 (m, 4H), 1.90–2.00 (m, 1H), 2.08–2.19 (m, 2H), 2.44–2.53 (m, 1H), 2.79–2.92 (m, 2H), 3.37 (s, 1H), 4.05–4.10 (m, 2H), 5.29 (s, 1H), 6.99– 7.03 (m, 1H), 7.12–7.21 (m, 2H), 7.69–7.72 (m, 1H). ¹³C NMR (CDCl₃) δ 13.8 (q), 18.9 (t), 24.5 (q), 25.8 (t), 26.8 (t), 31.3 (t), 37.5 (t), 50.8 (s), 60.8 (t), 74.3 (s), 76.5 (s), 125.2 (d), 126.7 (d), 127.5 (d), 127.8 (d), 135.2 (s), 139.3 (s), 177.8 (s). Anal. Calcd for C₁₈H₂₄O₄: C, 71.03%; H, 7.95%. Found: C, 71.08%; H, 7.98%.

4.4. General procedure for reduction with TiCl₄-Zn

To a solution of a diketone (1 mmol) in dry THF (10 mL) were added TiCl₄ (0.17 mL, 1.5 mmol) and zinc powder (0.20 g, 3 mmol) at 0 °C under an atmosphere of nitrogen, and the mixture was stirred for 12 h at room temperature. The mixture was diluted with 1 M HCl (20 mL) and extracted with ethyl acetate. The products were isolated by column chromatography on silica gel (hexanes/ethyl acetate).

4.5. X-ray crystallographic analysis of *erythro*-2b, *trans*-9b, *cis*-12, *trans*-14, 15, and *trans*-17

All measurements were made on a Rigaku RAXIS imaging plate area detector with graphite monochromated Mo K α radiation. The structure was solved by direct methods with SIR92 and expanded using Fourier techniques with DIRDIF99. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined isotropically. All calculations were performed with the Crystal Structure crystallographic software package. Crystal data are as follows: CCDC 640758–640763 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

erythro-**2b** (CCDC 640760): C₁₂H₁₈O₂, FW=194.26, mp 89–90 °C, monoclinic, C2/c (no. 5), colorless block, a=37.309(4) Å, b=11.4351(16) Å, c=22.318(3) Å, $\beta=103.389(6)^{\circ}$, V=9262.7(19) Å³, T=203 K, Z=32, $D_{calcd}=1.184$ g/cm³, $\mu=0.79$ cm⁻¹, GOF=1.020.

trans-**9b** (CCDC 640763): $C_{14}H_{20}O_3$, FW=236.31, mp 95–96 °C, monoclinic, $P2_{1/n}$ (no. 14), colorless block, a=

10.442(3) Å, b=11.751(3) Å, c=21.031(3) Å, $\beta=90.36(1)^{\circ}$, V=2580(1) Å³, T=298 K, Z=8, $D_{calcd}=1.216$ g/ cm³, $\mu=0.84$ cm⁻¹, GOF=1.000.

cis-**12** (CCDC 640759): $C_{16}H_{20}O_4$, FW=276.33, mp 105–106 °C, orthorhombic, *Pca2*₁ (no. 29), colorless block, *a*=10.339(2) Å, *b*=17.347(3) Å, *c*=8.130(1) Å, *V*=1458.1(4) Å³, *T*=298 K, *Z*=4, *D*_{calcd}=1.259 g/cm³, μ = 0.89 cm⁻¹, GOF=1.000.

trans-**14** (CCDC 640761): $C_{17}H_{22}O_4$, FW=290.36, mp 100–101 °C, monoclinic, $P2_{1/n}$ (no. 14), colorless block, a=18.086(3) Å, b=9.200(2) Å, c=19.199(3) Å, $\beta=108.300(8)^\circ$, V=3032.9(1) Å³, T=298 K, Z=8, $D_{calcd}=1.272$ g/cm³, $\mu=0.89$ cm⁻¹, GOF=1.00.

Compound **15** (CCDC 640758): $C_{15}H_{16}O_3$, FW=244.29, mp 164–165 °C, monoclinic, $P2_{1/n}$ (no. 14), colorless block, a=7.523(2) Å, b=16.129(3) Å, c=9.899(3) Å, $\beta=94.879(9)^\circ$, V=1196.7(5) Å³, T=298 K, Z=4, $D_{calcd}=1.356$ g/cm³, $\mu=0.93$ cm⁻¹, GOF=1.000.

trans-**17** (CCDC 640762): C₁₈H₂₄O₄, FW=304.39, mp 89– 90 °C, triclinic, *P*-1 (no. 2), colorless block, *a*=7.9339(5) Å, *b*=9.2597(5) Å, *c*=23.960(2) Å, *α*=100.035(3)°, *β*= 92.198(5)°, γ =105.216(3)°, *V*=1666.0(2) Å³, *T*=298 K, *Z*=4, *D*_{calcd}=1.213 g/cm³, *μ*=0.84 cm⁻¹, GOF=1.002.

References and notes

- For recent reports, see: (a) Kraynack, E. A.; Pedersen, S. F. J. Org. Chem. 1993, 58, 6114; (b) Konradi, A. W.; Kemp, S. J.; Pedersen, S. F. J. Am. Chem. Soc. 1994, 116, 1316; (c) Kang, M.; Park, J.; Pedersen, S. F. Synlett 1997, 41.
- For recent reports, see: (a) Takai, K.; Morita, R.; Matsusita, H.; Toratsu, C. *Chirality* 2003, *15*, 17; (b) Groth, U.; Jung, M.; Vogel, T. *Synlett* 2004, 1054; (c) Groth, U.; Jung, M.; Vogel, T. *Chem.—Eur. J.* 2005, *11*, 3127; (d) Fischer, S.; Groth, U.; Jung, M.; Lindenmaier, M.; Vogel, T. *Tetrahedron Lett.* 2005, *46*, 6679.
- Hou, Z.; Takamine, K.; Fujiwara, Y.; Taniguchi, H. Chem. Lett. 1987, 2061.
- (a) Hoffmann, H. M. R.; Münnich, I.; Nowitzki, O.; Stucke, H.; Williams, D. J. *Tetrahedron* **1996**, *52*, 11783; (b) Nowitzki, O.; Münnich, I.; Stucke, H.; Hoffmann, H. M. R. *Tetrahedron* **1996**, *52*, 11799.
- 5. Fujiwara, T.; Tsuruta, Y.; Arizono, K.; Takeda, T. Synlett **1997**, 962.
- Nair, V.; Ros, S.; Jayan, C. N.; Rath, N. P. *Tetrahedron Lett.* 2002, 43, 8967.
- Maekawa, H.; Yamamoto, Y.; Shimada, H.; Yonemura, K.; Nishiguchi, I. *Tetrahedron Lett.* 2004, 45, 3869.
- 8. Kise, N.; Arimoto, K.; Ueda, N. Tetrahedron Lett. 2003, 44, 6281.
- 9. Kise, N.; Agui, S.; Morimoto, S.; Ueda, N. J. Org. Chem. 2005, 70, 9407.
- Preliminary report: Kise, N.; Shiozawa, Y.; Ueda, N. *Tetrahedron Lett.* 2004, 45, 7599.
- Balskus, E. P.; Méndez-Andino, J.; Arbit, R. M.; Paquette, L. A. J. Org. Chem. 2001, 66, 6695.
- 12. Stetter, H. Angew. Chem. 1976, 88, 695.
- 13. Rigby, J. H.; Wilson, J. A. Z. J. Org. Chem. 1987, 52, 34.

- 14. Bellas, T. E.; Brownlee, R. G.; Silverstein, R. M. *Tetrahedron* **1969**, *25*, 5149.
- 15. Chini, M.; Crotti, P.; Macchia, F. J. Org. Chem. 1989, 54, 3930.
- 16. Christoffers, J. J. Chem. Soc., Perkin Trans. 1 1997, 3141.
- 17. Steinhuebel, D. P.; Lippard, S. J. J. Am. Chem. Soc. 1999, 121, 11762.
- 18. Ghera, E. J. Org. Chem. 1970, 35, 660.
- 19. Shono, T.; Ohmizu, H.; Kawakami, S. *Tetrahedron Lett.* **1979**, 4091.
- 20. Overberger, C. G.; Gainer, H. J. Am. Chem. Soc. 1958, 80, 4556.
- 21. Ji, S.; Matsushita, M.; Takahashi, T. T.; Horiuchi, C. A. *Tetrahedron Lett.* **1999**, 40, 6791.